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Abstract. This paper considers a one-parameter family of sand-piles. The family exhibits the crossover
between the models with deterministic and stochastic relaxation. The mean pile height is used to describe
the crossover. The height densities corresponding to the models with relaxation of both types approach
one another as the parameter increases. Relaxation is supposed to deal with the local losses of grains
by a fixed amount. In that case the densities show a step-like behaviour in contrast to the peaked shape
found in the models with the local loss of grains down to a fixed level [S. Lübeck, Phys. Rev. E 62, 6149
(2000)]. A spectral approach based on the long-run properties of the pile height considers the models
with deterministic and random relaxation more accurately and distinguishes between the two cases for
admissible parameter values.

PACS. 05.70.Jk Critical point phenomena – 05.65.+b Self-organized systems

1 Introduction

In 1987 Bak et al. (BTW) introduced their sand-pile
model [1]. The model involves a system containing some
physical quantity called sand in the original paper. The
system is slowly loaded. Extra loading results in a local re-
laxation. The local relaxation releases energy that can in-
stantly spread out to large distances. The spreading mech-
anism is fully deterministic. The model’s system achieves
its critical state without adjusting any parameter [2].

Numerous power laws describe the critical state. They
have been established theoretically [3,4] and numeri-
cally [5–7]. The model laws find their application in such
different fields as neural networks [8], earthquakes [9], and
solar flares [10].

A great demand for the model has resulted in its mod-
ifications. The versions that are the closest to the orig-
inal sand-pile model are probably Manna’s and Zhang’s
models [11,12]. Manna has defined the spreading of a lo-
cal relaxation in a stochastic way. Zhang has introduced a
continuous sand-pile. The critical behaviour of these mod-
els exhibits certain similarities. Since minor changes in the
rules of the model little affect the critical behaviour [13]
and the number of changes is inexhaustible, the models
need a strict classification.
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Many papers assign the models to the same universal-
ity class, if they have the same set of exponents determin-
ing the critical power laws [13]. The lively debate [14–18]
using different approaches has arrived at the conclusion
that BTW’s and Manna’s sand-piles belong to different
universality classes [19]. Preliminary investigation sug-
gests that the BTW and Zhang sand-piles should represent
the same universality class [20].

The paper [21] introduced a family of models realizing
the crossover between Manna’s and Zhang’s sand-piles.
The control parameter is closely related to local energy
relaxation. Small values of the energy characterize the
Manna model, while extremely large values lead to Zhang-
type behaviour.

Local relaxation is defined for Lübeck’s sand-piles [21]
in terms of energy loss down to a fixed level. The family of
sand-piles in [22] deals with the loss of energy by a fixed
amount.

The family of models in [22] enables the crossover be-
tween the BTW sand-pile and the random walk with some
modification of the Manna sand-pile in-between. This cro-
ssover corresponds to the relatively small energy men-
tioned above. On the other hand, the family determines
a sophisticated limit behaviour as the energy tends to in-
finity. The classification based on the power laws fails to
describe the great diversity that this continuous sand-pile
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family involves. De los Rios and Zhang [23] introduce an
appropriate global functional whose evolution calculated
in terms of the spectrum determines the system dynamics.

Karmakar et al. [24] introduce an energy propaga-
tion mechanism that lacks local symmetry, thus leading
to sand-piles with controlled disorder. These models de-
pend on some parameter that defines the asymmetry. The
BTW sand-pile belongs to these models and corresponds
to an absense of asymmetry. Establishing the determinis-
tic relaxation, the Karmakar et al. [24] family of models
essentially differs from those of [21] and [22]. The proper-
ties of this family have been found, but the crossover to
the BTW sand-pile is not considered.

In this paper we investigate the sand-pile family of [22].
The relevant sand distribution is found to be essentially
different from the distribution appearing in the models
usually discussed, in particular, in Zhang’s and Lübeck’s
models. As the control parameter is relatively large, the
difference between deterministic and stochastic relaxation
almost disappears, and the sand distribution over the sys-
tem proves to be similar for both types of models. How-
ever, the spectral properties select the sand-piles with the
deterministic relaxation.

2 The model

The model involves a two-dimensional square lattice L×L.
Each cell contains hij grains, where hij is less than an
integer threshold H . At every time moment, a cell (i, j)
is chosen at random. Its number of grains (referred to as
height) hij increases by 1:

hij −→ hij + 1.

If the resulting height hij remains less than H , then noth-
ing more happens at the moment. Otherwise, the cell (i, j)
becomes unstable and relaxes. Relaxation depends on an
integer control parameter n. An unstable cell distributes
its n grains “in equal parts” among its 4 nearest neigh-
bours. Namely, when n = 4k, each neighbour gets exactly
k grains.

Naturally, there exist numbers n = 4k + r, where the
residue r < 4 is not equal to zero. Then each neighbour
gets k grains and the remaining r grains are given to the
four different neighbours at random. The following for-
mula expresses the idea of this construction:

hij −→ hij − n,

hneighbour(i, j) −→ hneighbour(i, j) + k or
hneighbour(i, j) −→ hneighbour(i, j) + k + 1.

During relaxation other cells can achieve the threshold
H and become unstable, relaxing according to the same
rules. If a boundary cell relaxes, [n/4] or [n/4] + 1 grains
leave the lattice and dissipate, where [x] is the integer part
of x. (The dissipation is higher for the corner cells).

Successive acts of relaxation constitute an avalanche.
The size of any avalanche is the number of unstable cells
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Fig. 1. Normalized height density; the dashed lines are linear
fits; their slopes (sl) are given in the legend; L = 256.

during the avalanche counted according to their multi-
plicity. The dissipation at the boundary assures that the
avalanches are defined correctly and their size is finite.

The case n = H = 4 corresponds to the original sand-
pile of [1]. It is worth noting that [21] introduces a re-
laxation involving the loss of any unstable cell down to a
fixed level. To be specific, hij −→ H − n and hij grains
are passing one-by-one to the nearest neighbours; the re-
ceiver for each grain is found at random. These changes in
the rules qualitatively influence the system. The limiting
behaviour (n → ∞) for the [21] family and the models
discussed above is different.

Our family really depends on the parameter n only.
The values of H do not affect the system dynamics. They
determine the admissible interval [H − n,H) of heights.
Our simulation deals with H = 4, while the total number
of the grains added is 220n.

3 Pile height densities

Following the ideas of [21], we establish some features of
the sand distribution over the lattice. Let the normalized
heights hijn be hijn = (hij −H+n)/n. Then hijn ∈ [0, 1).
Further, ρn(k/n) is defined as the number of hijn equal
to k/n. Then the normalized function nρn(k/n) can be
treated as a probability density (we use this term, even
though the distribution is discrete). According to Figure 1,
the densities ρn(·)n follow four flat steps with a high ac-
curacy for n = 4k. The steps correspond to the values of
the density 4ρ4 for the BTW sand-pile. (The points of ρ4

shown in Figure 1 are in good agreement with the exact
values found in [25].)

Each density is fitted by a linear function (Fig. 1).
Their slopes (sl in the legend) slightly decrease with n
increasing and must be saturating as n tends to infinity.

The following construction manages to compare quan-
titatively the four steps of ρn(·) for n > 4 with the four
values of ρ4(·) representing the BTW sand-pile. Given
n = 4, 5, . . ., the values of the function ρn(·) are sam-
pled into four bins [0, 0.25), [0.25, 0.5), [0.5, 0.75), and
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Fig. 2. Difference between the steps of ρn and the function ρ4

measured by the functional σn.
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Fig. 3. Height density; the dashed lines are linear fits, L = 256;
their slopes (sl) are in the legend.

[0.75, 1) with the respective values of ψn(·) being as-
cribed to 0, 0.25, 0.5, and 0.75. For example, ψn(0) =
ρn(0) + ρn(1/n) + . . .+ ρn(j0/n), where j0 is the biggest
integer with j0/n < 0.25. In particular, ψ4(·) coincides
with ρ4(·). Then ψn(·) is defined at 4 points. Each value
of ψn(k/4), k = 0, 1, 2, 3, represents one step of ρn(·).

Let

σn =

√
√
√
√

3∑

k=0

(ψn(k/4) − ρ4(k/4))2 /3

Then σn measures the difference between the steps and
the function ρ4(·) corresponding to the BTW sand-pile.

The difference from the BTW sand-pile increases with
increasing σn (Fig. 2). These values of σn indicate that
there exists a certain maximum of the difference corre-
sponding to n ≈ 60. This observation agrees with the
change in the tendency exhibited by the sand-pile family
of [21] for the intermediate values of the control parameter.

In the same way, the densities are introduced to de-
velop models with n �= 4k starting from n = 3. A computer
experiment proves (Fig. 3) that the densities nρn quickly
(with n increasing) are aligned in four steps of 4ρ4. The
linear fits have slopes that are close to that for ρ4k.
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Fig. 4. Normalized spectrum ξn/n vs normalized frequency
f = fk. The inset contains the graphs in the boxed part of the
figure; ∆ = 8n, N = 16, r = 8192, L = 256. The dashed lines
indicate the error interval for the circles.

The following reasoning gives a rough explanation of
the step-like behaviour of the densities. Given the pa-
rameter value n, the heights are naturally divided into
four intervals [H − n,H − 3n/4), [H − 3n/4, H − n/2),
[H −n/2, H−n/4), [H −n/4, H), since each act of relax-
ation maps one interval onto another (possibly excepting
the boundary values due to the random effect). The nor-
malization (on n) transforms these intervals to the domain
of definition of the four steps shown in Figures 1 and 3.

It is worth noting that the sand-piles of [12,21] demon-
strate peaked densities of the average height in contrast
to our ρn.

In terms of the sand distribution, therefore, the family
exhibits a certain similarity. The densities ρn for n = 4k
and n �= 4k become almost indistinguishable, when n has
the order of a few tens.

4 A spectral approach

Another approach gives evidence of the diversity of the
two cases (n = 4k and n �= 4k). It deals with the spec-
trum of the average height h = L−2

∑L
i,j=1 hij . The aver-

age height is calculated at the end of every time moment
and treated as a function of time, h(t). The spectrum of
h(t) is successfully used in [23] to describe the authors’
sand-pile dynamics. Our spectrum of h(t) appears to be
noisy, therefore it has been averaged over several realiza-
tions. Besides, each realization is stored in the bins of
some length ∆. Then the Fourier transform determines
the spectrum ξ. The highest frequency is 1/∆ in the case
considered.

The formal procedure used to calculate the spectrum
consists of four steps.

1. For some fixed N the time moments for which h(t) is
catalogued are divided into N non-intersecting inter-
vals of the same length T .
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Fig. 5. Normalized spectrum ξn/n vs normalized frequency f = fk; ∆ = 8n, NR = 16, r = 8192, L = 256 (a) full graph, (b)
box in panel a. The dashed lines indicate the error interval for the diamonds.

2. For any fixed interval (step 1), the values of h(t) are
averaged over relatively small subintervals. This re-
duces the number of data for subsequent numerical
application of the fast Fourier transform. Let ∆ be the
length of the small subintervals and r be their num-
ber, r∆ = T . Then a signal xj is defined as the arith-
metic mean of all the h(t)-values in the j-th subinter-
val, j = 1, 2, . . . , r.

3. The spectrum of xj is determined in terms of the
Fourier transform:

x̂k =
1√
r

r∑

j=1

(

xj − 〈x〉)e− 2πikj
r ,

where 〈x〉 is the mean of xj , j = 1, . . . , r, i =
√−1.

Then the frequencies fk are k/(r∆), k = 1, 2, . . . , r,
and the power spectrum ξ(fk) of the signal xj is de-
fined as ξ(fk) = |x̂k|2.

4. Each of N intervals defined at step 1 generates its own
spectrum ξ(fk). The averaging of ξ(fk) results in a
stabilized spectrum, which we wanted to obtain. The
stabilized spectrum depends on the model parameter
n. Thus, the notation ξn(fk) is still valid for the sta-
bilized spectrum.

According to [22], the family of spectra admits of a cer-
tain normalization. If ∆ is proportional to n, the plot of
ξn(fk)/n versus dimensionless frequency fk∆ shows that
the graphs at high frequencies coalesce (Fig. 4). The scal-
ing of axes in Figure 4 remains reasonable for the other
frequencies.

Leaving aside the main part of the spectrum, we will
attend to some interval of low frequencies. The corre-
sponding part of the graphs is boxed in Figure 4 and shown
in the inset. In this part of this figure the curves of ξn/n
for small n are higher for larger n. When n ≈ 60, the
tendency is changed. The curve of ξn/n is close to that
of ξ4/4 at the leftmost points in the figure. However, in
contrast to ξ4/4, has a maximum. The change in tendency
for n ≈ 60 agrees with the behavior shown by the family
of functions of σn discussed above.

The horizontal coordinates of this box are not absolute
constants. They depend on the lattice length L and the
simulation time. As L increases, the box moves to the left,
becoming invisible in Figure 4.

The influence of the simulation time is essential. The
investigated part of the spectrum reflects the frequencies
of rare, large, and strongly dissipative avalanches. The lack
of data limits the results for these avalanches. This re-
mark agrees with the partial conclusions about the rare
avalanches for the BTW and Manna sand-piles [26].

In contrast to the quick convergence of ρnn, n �= 4k to
their four values, the family ξn/n of spectra exhibits quite
a different tendency. Since the high-frequency spectra are
rather similar (Fig. 5a), the analysis focuses on the low
frequencies (Fig. 5b) corresponding to the boxed part in
Figure 5a.

For n = 3 the normalized spectrum has its horizontal
interval. With n increasing, ξn/n changes on this interval.
Figure 5 demonstrates minor changes for n = 30 and a to-
tally different behaviour for n equal to 150 and 301. So, for
simulated large n, the low-frequency spectrum essentially
deviates from ξ3, as well as from ξ4k for large k.

According to Figure 4 and 5, the long-time evolution
of the sand-pile exhibits a great complexity. In contrast
to the spatial features, the several patterns here discussed
do not exhaust the spectrum behaviour. For the experi-
ments made here, the sand-piles with deterministic and
stochastic relaxation have different spectra.

5 Conclusion

To sum up, we have developed a family of sand-piles. The
control parameter n is the number of grains that any un-
stable cell passes to its neighbours. For n = 4k, the prop-
agation of grains through the lattice is fully determinis-
tic, while the models with n �= 4k involve some random
effect. In terms of the sand distribution, the random ef-
fect disappears when n is sufficiently large. However, a
trace of the deterministic relaxation remains visible in the
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spectrum of average height. A certain peak appears in the
low-frequency spectrum. With their peculiar evolutionary
properties, the sand-piles corresponding to deterministic
relaxation may admit some kind of prediction. This hy-
pothesis agrees with the effective precursors found for the
BTW sand-pile in [27].
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